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Summary of Reliawindy
•EU funded FP7 R&D project
•€7.7M total funding

•10 organisations involved
•3 years

•€5.5M EU funding

Aims:
•Improve general understanding of wind turbine and farm reliability
•Develop reliability models specific to wind turbines

•Increase MTBF •Increase Availability
•Decrease MTTR •Decrease Cost of  Energy

Important Onshore Critical Offshore
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Summary of Reliawindy
Partners:Partners:
1.1. GamesaGamesa Wind Turbine1.1. GamesaGamesa
2.2. EcotecniaEcotecnia
3.3. LM LM GlasfiberGlasfiber

Wind Turbine
Manufacturers

4.4. Hansen TransmissionsHansen Transmissions
5.5. ABB Machines & DrivesABB Machines & Drives

Component
Manufacturers

6.6. SKF SKF UKUK
7.7. GarradGarrad HassanHassan
88 RELEXRELEX8.8. RELEXRELEX
9.9. Durham UniversityDurham University
1010 SZTAKISZTAKI

Expert
Knowledge

10.10. SZTAKI SZTAKI 
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Availability & Reliability
M Ti T F ilM Ti T F il MTTFMTTF•• Mean Time To Failure, Mean Time To Failure, MTTFMTTF

•• Mean Time to Repair, or downtime Mean Time to Repair, or downtime MTTRMTTR
•• Logistic Delay TimeLogistic Delay Time LDTLDT
•• Mean Time Between Failures, Mean Time Between Failures, 

MTTF ≈ MTBFMTTF ≈ MTBF
MTBF=MTTF+MTTR+LDTMTBF=MTTF+MTTR+LDT

•• Failure rate, Failure rate, λ λ λλ = 1/MTBF= 1/MTBF
•• Repair rate, Repair rate, μμ μμ=1/MTTR=1/MTTR

MTBF≈MTTF+MTTR=1/MTBF≈MTTF+MTTR=1/λ +1/ μλ +1/ μ
•• Manufacturer’s or Inherent Availability, Manufacturer’s or Inherent Availability, 

AAii=(MTBF=(MTBF--MTTR)/MTBF=1MTTR)/MTBF=1−−(λ/μ)(λ/μ)
•• Operational or Technical Availability,                          Operational or Technical Availability,                          

AA =MTTF/MTBF < 1=MTTF/MTBF < 1−−(λ/μ)(λ/μ)AAoo=MTTF/MTBF < 1=MTTF/MTBF < 1−−(λ/μ)(λ/μ)
•• Typical UK valuesTypical UK values

–– Operational or Technical Availability Operational or Technical Availability 97%, 97%, 
–– Manufacturer’s or Inherent Availability Manufacturer’s or Inherent Availability 98%98%
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Cost of Energy, COE
•• COE, £/kWh= COE, £/kWh= 

O&M+ {[(ICC*FCR) + LRC]/O&M+ {[(ICC*FCR) + LRC]/AEPnetAEPnet} } 
O&M=O&M=Cost of Operations & Maintenance £Cost of Operations & Maintenance £–– O&M=O&M=Cost of Operations & Maintenance, £Cost of Operations & Maintenance, £

–– ICC=ICC=Initial Capital Cost, £Initial Capital Cost, £
–– FCRFCR=Fixed Charge Rate, interest, %=Fixed Charge Rate, interest, %
–– LRCLRC==LevelisedLevelised Cost of Replacement, replacing unavailable Cost of Replacement, replacing unavailable 

generation, £generation, £
–– AEPAEP=Annualised Energy Production kWh=Annualised Energy Production kWh–– AEPAEP=Annualised Energy Production, kWh=Annualised Energy Production, kWh

•• COE , £/kWh = COE , £/kWh = 
O&M(O&M(λλ, , 1/1/μ) μ) + {[(ICC*FCR) + LRC(+ {[(ICC*FCR) + LRC(λλ,, 1/1/μ)μ)]/]/AEPnetAEPnet(A((A(μμ, , 1/1/λλ)} )} 
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Cost of Energy, COE
•• Reduce failure rate, Reduce failure rate, λ,λ,

Reliability MTBFReliability MTBF 1/1/λλ increases andincreases andReliability MTBF, Reliability MTBF, 1/1/λ,λ, increases andincreases and
Availability, Availability, AA, improves, improves

•• Increase repair rate, Increase repair rate, μ,μ,
Downtime MTTFDowntime MTTF 1/1/μ  μ  reducesreduces andandDowntime MTTF, Downtime MTTF, 1/1/μ, μ, reducesreduces,, andand
Availability, Availability, AA, improves, improves
Th f dTh f d COECOE•• Therefore reduces Therefore reduces COECOE
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The Bathtub Curve
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Trend in Turbine Failure Rates 
with timewith time
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Reliability & Size, EU
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Wind TurbineWind Turbine 
Configurations
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Reliability & Subassemblies , EUy

IndustrialIndustrial
Reliability 
figures
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Reliability & Downtime & 
Subassemblies, EU,

Electrical System LWK Failure Rate, approx 6000 Turbine Years

ISET Pivot Diagram Failure Rate and Downtime from 2 Large Surveys of European Wind Turbines

Hydraulic System

Other

Electrical Control WMEP Failure Rate, approx 7800 Turbine 
Years
LWK Downtime, approx 6000 Turbine Years

WMEP Downtime, approx 7800 Turbine Years
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Annual failure frequency Downtime per failure (days)

RELIAWIND Training Course, 
1st June 2009, Helsinki



Reliability & Time, LWK

0

LWK, E66, converter

0.
8

1.
0

/ y
ea

r]

im
e:

  9
  y

ea
rs

0.
6

ty
  [

fa
ilu

re
s 

ac
tu

al
 e

la
ps

ed
 t

demonstrated reliabilitydemonstrated reliabilitydemonstrated reliability

0.
2

0.
4

lu
re

 in
te

ns
it a

0 20 40 60 80 100

0.
0

fa
i industrial range

16 of 25
total test time [turbines * year]



Reliability & Time, LWK 
GeneratorsGenerators
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Figure 4.4: Variation between the failure rates of generator subassemblies, in the LWK 

population of German WTs, using the PLP model. 
The upper two are low speed direct drive generators while the lower two are high speed
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The upper two are low speed direct drive generators while the lower two are high speed 
indirect drive generators. 

 



Reliability & Time, LWK
GearboxesGearboxes
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Figure 4 5: Variation between the failure rates of gearbox subassemblies using the
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Figure 4.5: Variation between the failure rates of gearbox subassemblies, using the 
PLP model, in the LWK population of German WTs. 

 



Reliability & Time, LWK 
ElectronicsElectronics
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Figure 4.6: Variation between the failure rates of electronics subassemblies, or converter, 

using the PLP model, in the LWK population of German WTs. 
The upper two are low speed direct drive generators with fully rated converters while the lower 

hi h d i di d i i h i ll d

19 of 25

two are high speed indirect drive generators with partially rated converters.
 



Reliability of  Electronics,
Important Root CausesImportant Root Causes

1.Components 2. Environmental conditions
•Stochastic variation of the wind
•Diurnal variation of the weather
•Geographical locationGeographical location

3. Control
•Excessive I/O from converters
•Uncoordinated Alarms from 
excessive I/O

Failure root cause  distribution 
for power electronics

from E Wolfgang, 2007

excessive I/O 
• False alarms causing unnecessary 
trips
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Downtime of Wind Turbines
G 1994 2004Germany 1994-2004
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Variable Load of Wind Power
Line Side InverterLine Side Inverter
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Variable Load of Wind Power
Generator Side InverterGenerator Side Inverter
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Conclusions
•• Definitions of Availability are open to interpretationDefinitions of Availability are open to interpretation•• Definitions of Availability are open to interpretationDefinitions of Availability are open to interpretation
•• Unreliability  > 1 failure/turbine/year is commonUnreliability  > 1 failure/turbine/year is common
•• Unreliability increases with turbine sizeUnreliability increases with turbine size
•• Such unreliability will be unacceptable offshoreSuch unreliability will be unacceptable offshore
•• Offshore we need unreliability < 0.5 failure/turbine/yearOffshore we need unreliability < 0.5 failure/turbine/year
•• Unreliability concentrated mainly in the Drive Train including electricsUnreliability concentrated mainly in the Drive Train including electrics
•• Some unreliable subassemblies are surprising:Some unreliable subassemblies are surprising:

For example gearboxes are not unreliableFor example gearboxes are not unreliable–– For example gearboxes are not unreliableFor example gearboxes are not unreliable
–– But gearbox failures cause large downtime and costsBut gearbox failures cause large downtime and costs
–– But electrical parts are unreliableBut electrical parts are unreliable
–– Cause less downtime but significant costs, their downtime will increase Cause less downtime but significant costs, their downtime will increase 

ff hff hoffshoreoffshore
•• For electrical parts the root causes from these surveys are not clear:For electrical parts the root causes from these surveys are not clear:

–– ComponentsComponents
–– Environmental conditionsEnvironmental conditions
–– ControlsControls

•• But the highly variable loading on turbines is clearly a factorBut the highly variable loading on turbines is clearly a factor
•• And false alarms are almost certainly a factorAnd false alarms are almost certainly a factor
•• PrePre testing is essential to eliminate early life failurestesting is essential to eliminate early life failures
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•• PrePre--testing is essential to eliminate early life failurestesting is essential to eliminate early life failures
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